
chaoss.community

@tom_mens

Measuring

Technical Lag in

Software Deployments

Dr. Tom Mens
Dr. Ahmed Zerouali
Software Engineering Lab
University of Mons

tom.mens@umons.ac.be

http://chaoss.community/

chaoss.community

secoassist.github.io

@secoassist

"Excellence of Science" Research Project

http://chaoss.community/

chaoss.community

Don’t updateUpdate

Focus

Which measures can help software developers and
deployers to decide when and why they should update?

3

http://chaoss.community/

chaoss.community

OutdatedUp-to-date

Focus

4

http://chaoss.community/

chaoss.community

Online survey

What would be the most appropriate (i.e., ideal)
version of a software library to depend on?

• 17 respondents
Highly educated with an average of 3 years of
development experience

• Responses:

5

★ Most stable (14)
★ Latest available (9)
★ Most documented (7)
★ Most secure (5)

http://chaoss.community/

chaoss.community

Idea: Technical Lag

“The increasing difference between deployed software
packages and the ideal available upstream packages.”

6

Ideal
• stability, security, functionality, recency, etc.

Difference
• time, version updates, bugs, vulnerabilities, features, …

J. Gonzalez-Barahona, P. Sherwood, G. Robles, D. Izquierdo (2017)
"Technical lag in software compilations: Measuring how outdated a software

deployment is.” IFIP International Conference on Open Source Systems. Springer

http://chaoss.community/

chaoss.community

Importance of Technical Lag

Semi-structured interviews:

2019

5 highly educated software practitioners with
an average of 10 years of experience

7

Technical Lag is important, especially if we mix
between the benefits of updating and the effort
required to do that.

http://chaoss.community/

chaoss.community

Measuring Technical Lag

∆ version
∆ time
∆ bugs
∆ vulnerabilities

http://chaoss.community/

chaoss.community

Measuring Technical Lag

A technical lag framework F is a tuple (C, L, ideal, delta, agg) with
• C a set of component releases
• L a set of possible lag values
• ideal: C → C computes the “ideal” (upstream) component

release for a given (deployed) release
• delta: C x C → L computes the difference between two

component releases
• agg: 2L → L aggregates the results of a set of lags

A formal framework for measuring technical lag in component repositories – and
its application to npm. A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E.
Constantinou, G. Robles. Wiley Journal on Software Evolution and Process, 2019

http://chaoss.community/

chaoss.community

Measuring Technical Lag

Given a technical lag framework F, we define

techlagF(c) = delta(c,ideal(c))
for any deployed component c

aggLagF(D) = agg({techlagF(c) | c in D})
for any set of deployed components D

A formal framework for measuring technical lag in component repositories – and
its application to npm. A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E.
Constantinou, G. Robles. Wiley Journal on Software Evolution and Process, 2019

http://chaoss.community/

chaoss.community

Technical Lag - Example

Time-based measurement of technical lag
(ideal = most recent release; delta = time difference)

1.0.1 1.1.0 2.0.01.2.0 2.0.1

deployed
package

upstream
package

Time lag
date(2.0.1) - date(1.1.0)

http://chaoss.community/

chaoss.community

Technical Lag - Example

Version-based measurement of technical lag
(ideal = highest release; delta = version difference)

1.0.1 1.1.0 2.0.12.0.0 1.2.0

deployed
package

1 major

upstream
package

1 patch

Version lag

1 major + 1 patch

http://chaoss.community/

chaoss.community

Technical Lag - Example

Vulnerability-based measurement of technical lag
(ideal = least vulnerable release; delta = #vulnerabilities)

1.0.1 1.1.0 2.0.01.2.0 2.0.1

deployed
package

upstream
package

Security lag

1 vulnerability fix behind

http://chaoss.community/

chaoss.community

Technical Lag - Example

Bug-based measurement of technical lag
(ideal = least known bugs; delta = #known bugs)

1.0.1 1.1.0 2.0.0

deployed
package

upstream
package

1.2.0 2.0.1

Dependency needs to be downgraded to
be able to use most stable version…

Bug lag
1 more bug than

most stable version

http://chaoss.community/

chaoss.community

Case study 1: Technical lag in npm
distribution of JavaScript packages

Credits: https://exploring-data.com/vis/npm-packages-dependencies/

A. Decan, T. Mens, E. Constantinou (2018)
On the evolution of technical lag in the npm

package dependency network. IEEE Int’l
Conf. Software Maintenance and Evolution

+20M
dependencies

http://chaoss.community/

chaoss.community

package.json

Technical Lag – Example

16

http://chaoss.community/

chaoss.community

Technical Lag – Example

17

http://chaoss.community/

chaoss.community

Technical Lag – Example

18

Time-based technical lag for deployed release debug 2.6.9

ideal (debug 2.6.9) = debug 3.1.0
timeLag(debug 2.6.9) = 26-09-2017 - 22-09-2017 = 4 days
versionLag(debug 2.6.9) = 1 major + 1 minor + 1 patch

http://chaoss.community/

chaoss.community

Technical Lag – Example

19

Time-based technical lag for deployed release ms 2.0.0

ideal (ms 2.0.0) = ms 2.1.1
timeLag(ms 2.0.0) = 30-11-2017 - 16-05-2017 = 198 days
versionLag(ms 2.0.0) = 1 minor + 1 patch

http://chaoss.community/

chaoss.community

Technical Lag – Example

20

Aggregated transitive time lag for deployed release youtube-player 5.5.0

agglag({debug 2.6.9, ms 2.0.0}) = max(4 days, 198 days) = 198 days

http://chaoss.community/

chaoss.community

Tool support
Example: david-dm.org

http://chaoss.community/

chaoss.community

Case study 2: Technical lag in
Debian-based Docker containers

A. Zerouali, T. Mens, G. Robles, J. Gonzalez-Barahona (2019). On the relation between
outdated Docker containers, security vulnerabilities, and bugs. IEEE In’tl Conf. SANER

http://chaoss.community/

chaoss.community

Case study 2: Technical lag in
Debian-based Docker containers

Important issues faced when deploying Docker containers:
• Security vulnerabilities
• Dependence on external software packages
• Presence of bugs in third-party software
• Outdated third-party software

http://chaoss.community/

chaoss.community

1.0.1 1.1.0 2.0.01.2.1 2.1.0

Docker
container C

Technical lag

∆ versions (freshness)

∆ vulnerabilities (security)

∆ bugs (stability)

« ideal »
release

deployed
container

included
Debian

package
release

upstream
releases of the

Debian package

Technical Lag in
Debian-based Docker containers

26

http://chaoss.community/

chaoss.community

Tool support
Example: snyk container

http://chaoss.community/

chaoss.community

Summary

Technical Lag is a very useful generic measure for assessing to which extent deployed
software is outdated w.r.t. upstream releases.

• Different ways to measure (time, version, bugs, vulnerabilities, …)
and aggregate (max, sum, …) technical lag

• It can be operationalized in different contexts (package dependency management,
container deployment, …)

Suggestion:

• Include this measure as part of the CHAOSS Metrics and Tooling

Open Challenges:

• How to measure effort required to update?

• How to combine multiple dimensions of technical lag?

• How to assess whether updates do not cause breaking changes?
30

http://chaoss.community/

chaoss.community

New proposed CHAOSS project metrics

• Dependencies
• Number of / List of; Direct or transitive

• Dependency depth
• Outdated dependencies

• List of / Number of / Ratio of

• Vulnerable dependencies
• List of / Number of / Ratio of

• Dependents (i.e. reverse dependencies)
• Number of / List of; Direct or transitive

• Dependency lag
• aggregated dependency-based technical lag of a project

• Deployment lag
• Aggregated lag of set of deployed components w.r.t. upstream

http://chaoss.community/

chaoss.community

SoHeal, May 2020 http://soheal.github.io

3rd Int’l ICSE Workshop on Software Health

What?
• Focus on the health of software projects, communities and ecosystems
• Discuss about technical, social, legal and business aspects related to

project effectiveness, success, longevity, growth, resilience, survival,
diversity, sustainability, popularity, inclusiveness, ...

Who?
• Open Source Community Members, Industry and Academia

Why?
• Raise awareness on software health
• Present tools, methods, practical experiences
• Advance body of knowledge on software health

Seoul, South Korea – May 2020

@iw_soheal

http://chaoss.community/

chaoss.community

SoHeal 2020 http://soheal.github.io/cft.html

Extended call for submissions

Are you a involved in software projects or ecosystems,
and have something to say about software health?

Submit a short paper or talk proposal on
• Open source and industrial experiences from individual, team or community level
• Relation between software health and social, technical, legal, process

and business aspects
• Tools, dashboards and models to enable, assess, predict and

recommend software health
• Guidelines and lessons learned

Submission deadline: Friday, February 7, 2019

http://chaoss.community/

